Tuesday, June 3, 2008

Biotechnology

Biological technology
Biological technologyBiological technology is technology based on biology, especially when used in agriculture, food science, and medicine. The United Nations Convention on Biological Diversity has come up with one of many definitions of biotechnology "Biotechnology means any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use." Biotechnology is a popular term for the generic technology of the 21st century. Although it has been utilised for centuries in traditional production processes, modern biotechnology is only 50 years old and in the last decades it has been witnessing tremendous developments. Bioengineering is the science upon which all Biotechnological applications are based.With the development of new approaches and modern techniques, traditional biotechnology industries are also acquiring new horizons enabling them to improve the quality of their products and increase the productivity of their systems. Before the 1970s, the term, biotechnology, was primarily used in the food processing and agriculture industries. Since the 1970s, it began to be used by the Western scientific establishment to refer to laboratory-based techniques being developed in biological research, such as recombinant DNA or tissue culture-based processes. In fact, the term should be used in a much broader sense to describe the whole range of methods, both ancient and modern, used to manipulate organic to reach the demands of human. So the term can be defined as, "The application of indigenous and/or scientific knowledge to the management of (parts of) microorganisms, or of cells and tissues of higher organisms, so that these supply goods and services of use to human beings
Recombinant DNA
Recombinant DNA is a form of artificial DNA which is engineered through the combination or insertion of one or more DNA strands, thereby combining DNA sequences which would not normally occur together.[1] In terms of genetic modification, recombinant DNA is produced through the addition of relevant DNA into an existing organismal genome, such as the plasmid of bacteria, to code for or alter different traits for a specific purpose, such as immunity. It differs from genetic recombination, in that it does not occur through processes within the cell or ribosome, but is exclusively engineered. The Recombinant DNA technique was engineered by Stanley Norman Cohen and Herbert Boyer in 1973. They published their findings in a 1974 paper entitled "Construction of Biologically Functional Bacterial Plasmids in vitro", which described a technique to isolate and amplify genes or DNA segments and insert them into another cell with precision, creating a transgenic bacterium. Recombinant DNA technology was made possible by the discovery of restriction endonucleases by Werner Arber, Daniel Nathans, and Hamilton Smith, for which they received the 1978 Nobel Prize in MedicineThat's a very good question! rDNA stands for recombinant DNA. Before we get to the "r" part, we need to understand DNA. Those of you with a background in biology probably know about DNA, but a lot of ChemE's haven't seen DNA since high school biology. DNA is the keeper of the all the information needed to recreate an organism. All DNA is made up of a base consisting of sugar, phosphate and one nitrogen base. There are four nitrogen bases, adenine thymine guanine and cytosine . The nitrogen bases are found in pairs, with A & T and G & C paired together. The sequence of the nitrogen bases can be arranged in an infinite ways, and their structure isknown as the famous "double helix" which is shown in the image below. The sugar used in DNA is deoxyribose. The four nitrogen bases are the same for all organisms. The sequence and number of bases is what creates diversity. DNA does not actually make the organism, it only makes proteins. The DNA is transcribed into mRNA and mRNA is translated into protein, and the protein then forms theorganism. By changing the DNA sequence, the way in which the protein is formed changes. This leads to either a different protein, or an inactive proteinThat's a very good question! rDNA stands for recombinant DNA. Before we get to the "r" part, we need to understand DNA. Those of you with a background in biology probably know about DNA, but a lot of ChemE's haven't seen DNA since high school biology. DNA is the keeper of the all the information needed to recreate an organism. All DNA is made up of a base consisting of sugar, phosphate and one nitrogen base. There are four nitrogen bases, adenine (A), thymine (T), guanine (G), and cytosine (C). The nitrogen bases are found in pairs, with A & T and G & C paired together. The sequence of the nitrogen bases can be arranged in an infinite ways, and their structure is known as the famous "double helix" which is shown in the image below. The sugar used in DNA is deoxyribose. The four nitrogen bases are the same for all organisms. The sequence and number of bases is what creates diversity. DNA does not actuallymake the organism, it only makes proteins. The DNA is transcribed into mRNA and mRNA is translated into protein, and the protein then forms the organism. By changing the DNA sequence, the way in which the protein is formed changes. This leads to either a different protein, or an inactive proteinRecombinant DNA is DNA that has been created artificially. DNA from two or more sources is incorporated into a single recombinant molecule.
Plasmids
Electron micrograph of an E. coli cell ruptured to release its DNA. The tangle is a portion of a single DNA molecule containing over 4.6 million base pairs encoding approximately 4,300 genes. The small circlets are plasmids. (Courtesy of Huntington Potter and David Dressler, Harvard Medical School.) Plasmids are molecules of DNA that are found in bacteria separate from the bacterial chromosome. are small a few thousand base pairs usually carry only one or a few genes are circular have a single origin of replicationPlasmids are replicated by the same machinery that replicates the bacterial chromosome. Some plasmids are copied at about the same rate as the chromosome, so a single cell is apt to have only a single copy of the plasmid. Other plasmids are copied at a high rate and a single cell may have 50 or more of them. Genes on plasmids with high numbers of copies are usually expressed at high levels. In nature, these genes often encode proteins (e.g., enzymes) that protect the bacterium from one or more antibiotics. Plasmids enter the bacterial cell with relative ease. This occurs in nature and may account for the rapid spread of antibiotic resistance in hospitals and elsewhere. Plasmids can be deliberately introduced into bacteria in the laboratory transforming the cell with the incoming genes.
Model organisms
Because of the great diversity found in animals, it is more economical for scientists around the world concert their efforts on a small number of chosen species so that connections can be drawn from their work and conclusions extrapolated about how animals function in general. Because they are easy to keep and breed, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans have long been the most intensively studied metazoan model organism, and among the first lifeforms to be genetically sequenced. This was facilitated by the severely reduced state of their genomes, but the double-edged sword here is that with many genes, introns and linkages lost, these ecdysozoans can teach us little about the origins of animals in general. The extent of this type of evolution within the superphylum will be revealed by the crustacean, annelid, and molluscan genome projects currently in progress. Analysis of the starlet sea anemone genome has emphasised the importance of sponges, placozoans, and choanoflagellates, also being sequenced, in explaining the arrival of 1500 ancestral genes unique to the EumetazoaAn analyse of the homoscleromorph sponge Oscarella carmela also suggests that the last common ancestor of sponges and the eumetazoan animals were more comlex than previously assumed